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Abstract—A random-walk-based (RW-based) information
search makes a single query or multiple queries walk around
a network to search for the target information. Local navigation
rules, based on which a query chooses an adjacent node to
move from the current location, are important for increasing
the search speed of the RW-based information search. In the
present paper, we focus on degree-dependent navigation rules that
use information on the degrees of nodes adjacent to the query’s
location. We find that a low-degree-preferential RW, where the
query preferentially moves a step to lower-degree nodes, exhibits
better search performance than a high-degree-preferential or an
unbiased RW. In the present paper, we present several theoretical
and numerical results in order to support this rather surprising
finding.

I. Introduction

The Internet is a huge database storing large amounts of
various types of information. Due to the unstructured nature
of the Internet, however, sometimes it is not easy to retrieve
desired information. We often conduct information searches on
the Internet by manually using search engines, such as Google
or Yahoo, which rely on a centralized and structured database.
Developing and maintaining such databases is extremely ex-
pensive because the Internet is still growing and information
changes very frequently. In this sense, exploring other possible
techniques for information search remains an important issue.

In the present paper, we are concerned with information
searches on the Internet using mobile agents [1]. Mobile agents
are software programs that can migrate from host to host in
a network to perform a given job at times and places of their
own choosing. Information search and retrieval using mobile
agents have been investigated over the past decade and have
been used in file-sharing systems based on unstructured P2Ps.
For example, Gnutella uses a kind of mobile agent, called a
query, for file searches. A Gnutella client (node) initiates file
searches by broadcasting queries to its adjacent nodes. A query
searches for the target file when it arrives at a node and, if it
fails to find the target file there, it makes copies of itself and
broadcasts them to adjacent nodes of its current location. This
procedure is referred to as flooding. The flooding-based search
is very powerful but requires a large amount of bandwidth
and congests the network with query traffic. In order to avoid
congestion, several extensions of the flooding-based search
have been proposed and used in unstructured P2Ps [2], [3].

Instead of a flooding-based search, in the present paper,
we explore the possibility of a random-walk-based (RW-
based) search, where a single query or multiple queries walk
around the network to search for information satisfying given

conditions (e.g., including a given list of keywords) [4], [5].
Starting from a user node, a query visits adjacent nodes and
searches for the target information there. If the query fails
to find the target information, it moves a step to one of the
nodes adjacent to its current location. The query continues this
procedure until the target information is found or the number of
visits exceeds a given limit. The load of the RW-based search
is less than that of the flooding-based search but is likely to
require a longer time to retrieve the target information than the
flooding-based search.

In order to increase the search speed of the RW-based
information search, in the present paper, we investigate local
navigation rules, according to which a query chooses an
adjacent node to move from the current location. In particular,
we focus on degree-dependent navigation rules that use infor-
mation on the degrees of adjacent nodes. Adamic et al. [4]
found that intentionally moving a step to high-degree nodes
increases the search speed when a query knows all pieces of
information stored at its first and second neighbor locations.
In actuality, however, it seems difficult for a query to know
the information stored at neighbor nodes.

In the present paper, we examine the local navigation rule
in the simplest and mostly common situation, in which a query
does not know anything about information stored at nodes
neighboring its location. In this situation, we are surprisingly
driven to a totally opposite conclusion to that of Adamic et
al., namely, the low-degree-preferential RW, where the query
preferentially moves a step to lower-degree nodes, exhibits
better search performance than the high-degree-preferential
(or unbiased) RW. In the present paper, we present some
theoretical results as well as numerical evidence indicating
the suitability of the low-degree-preferential RW for use in
information search.

The remainder of the present paper is organized as follows.
In Section II, we summarize research related to the search
algorithm proposed for unstructured P2Ps. In Section III, we
explain the concept of the low-degree-preferential RW and
present theoretical results showing why it is promising for
use in information searches. In Section IV, we present several
simulation results to demonstrate the effectiveness of the low-
degree-preferential RW for information search. Finally, we
conclude the paper in Section V.

II. Related Research

The initial version of Gnutella broadcasted query messages
over the network by flooding. The current version of Gnutella
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uses iterative deepening [3], whereby flooding is performed
while increasing the time-to-live (TTL) constraint until the
search is successful [6]. Jiang et al. [2] proposed LightFlood,
which broadcasts over a preconstructed tree, and we previously
proposed broadcasting over the concatenation of the hop-
limited shortest-path trees [7]. These tree-based broadcasting
methods are effective for preventing multiple copies of a
message from arriving at any one node.

Some research has been conducted on searching with a
random walk, in which an unduplicated query wanders around
the network in order to reduce the bandwidth used in flooding
[5], [4]. Lv et al. [5] proposed k-random walk, a search based
on a random walk, where k random walkers are used to search
for the requested file. Adamic et al. [4] proposed a random
walk in which walkers are forwarded to nodes that are pro-
portional to their degrees. They also proposed a self-avoiding
random walk, in which walkers cannot return to nodes they
have already visited. Flooding wastes resources, while random-
walk searches or depth-first searches significantly increase the
latency of the search.

Gkantsidis et al. [8] proposed a hybrid search scheme
that combines flooding and random walks. In their scheme, a
node initiating a search determines in advance the number of
queries replicated in the search, referred to as the budget. When
forwarding a query with budget k to d neighbor nodes, the
node distributes the budget by selecting d integers k1, . . . , kd
with k1 + · · ·+ kd = k, and forwards the query to node i with a
budget equal to ki. Each neighbor reduces the budget by 1 and
repeats the procedure. When d = 1, this scheme is equivalent to
a random-walk search with hop limit k. When d is equal to the
node degree, it is equivalent to flooding with a constraint on the
number of queries replicated. Chen et al. [9] also proposed a
hybrid scheme similar to that proposed by Gkantsidis et al. [8].

Only a few studies focused on the importance of low-
degree nodes. Among these, Liu [10] showed that the frac-
tion of driver nodes, which can offer full control over the
network, is significantly higher among low-degree nodes than
among the hub nodes. Toyoizumi et al. [11] proposed an
information-spreading mechanism that distributes information
with a probability that is inversely proportional to the degree
of the receiving end node.

III. Proposal

A. Low-degree-preferential RW

Consider a random walk in which a single walker wanders
on a nondirectional and connected graph (network). In the
present paper, the random walk, in which the walker randomly
selects an adjacent node to move to with equal probability is
referred to as the basic random walk (RW), and the information
search based on the basic RW is referred to as the basic-RW-
based search. The walker under the basic RW is known to
have a preference for high-degree nodes. More precisely, the
probability that a basic-RW-based walker stays at a given node
is proportional to its degree in a stationary state. Because of
this, the basic-RW-based search may require a long time to
retrieve the desired information if it is stored in a low-degree
node.

If the amount of information stored at a given node does not
depend on its degree, the walker should equally visit all nodes

regardless of their degrees. In order to mitigate the preference
for high-degree nodes of the basic RW, we propose the low-
degree-preferential RW, where the walker is likely to move a
step to an adjacent node, the degree of which is lower than
those of other adjacent nodes.

In order to explain in detail the algorithm of the low-
degree-preferential RW, let N (i) be a set of adjacent nodes of
node i, and let d j be the degree of node j ∈ N (i). The walker
locating node i moves to node j ∈ N (i) with probability pi→ j,
which is given below.

pi→ j =
dc

j∑
k∈N (i) dc

k
. (1)

where c is referred to herein as the preference parameter.
When c = −1, the walker moves to an adjacent node with a
probability that is inversely proportional to the degree. In the
limit of c → −∞, transition probability (1) yields the lowest-
degree-preferential RW, where the walker moves to the lowest-
degree node among adjacent nodes of its current location. The
random walk governed by transition probability (1) is referred
to herein as the low-degree-preferential RW if the preference
parameter is less than 0.

B. Theoretical Considerations

1) Mathematical Model: Let us consider a mathematical
model in which the walker can move from any node to any
other node directly, regardless of the existence of the link
between the two nodes. Although this model does not precisely
represent actual random walks, it concisely reveals the reason
why the low-degree-preferential RW is preferable for use in
information search. Let N be the number of nodes. We assume
that the transition probability from node i to node j depends
only on j, denoted by π j, and does not depend on i. Under
this assumption, the stationary occupation probability of the
walker is equal to π = (π1, . . . , πN), i.e., the walker stays at
node i with probability πi in stationary states. Define

Ii(n) def
= 1(the walker has visited node i until Tn).

where Tn is the time at which the walker makes the nth step,
and 1(A) is the indicator function that is equal to 1 (0) when
A is true (false). The number of distinct nodes that the walker
has visited until Tn, denoted by S n, is given as

S n =

N∑
i=1

Ii(n). (2)

In order to obtain the expectation of S n, note that

Ii(n) =
n∑

k=1

1(the walker first visits node i at Tk),

from which

E[Ii(n)] =
n∑

k=1

P(the walker first visits node i at Tk)

=

n∑
k=1

πi(1 − πi)k−1

= 1 − (1 − πi)n.
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Substituting the above result into (2) yields

E[S n] =
N∑

i=1

E[Ii(n)] = N −
N∑

i=1

(1 − πi)n.

This model is closely related to the classical coupon-collection
problem [12], [13], where coupons are collected one-by-one by
purchasing coupon packages, each of which contains only one
coupon. The type i coupon is contained in a purchased package
with probability πi, and the types of coupons contained in
different packages are statistically independent. It is easy to see
that S n corresponds to the number of purchases necessary for
acquiring n distinct types of coupons in the classical coupon-
collection problem. In order to remind us of the dependence
of S n on π, in the following we denote S n by S n(π).

For later use, we introduce the definition of the usual
stochastic order (Definition 1) as well as two lemmas (Lemmas
1 and 2), which shows the usual-stochastic-order relationship
in the classical coupon collection problem.

Definition 1 (Shaked and Shanthikumar [14]). Let X1 and X2
be random variables on R. Then, X1 is called smaller than X2
in terms of the usual stochastic order, denoted as X1 ≤st X2, if

P(X1 > x) ≤ P(X2 > x) for all x.

Lemma 1 (Shaked and Shanthikumar [14]). If X1 ≤st X2, then
for all increasing function f

E[ f (X1)] ≤ E[ f (X2)],

provided the expectations exist.

Lemma 2 (Shioda [13]). If S n(π) ≤st S n(πave), where

πave
def
= (p̄, . . . , p̄), p̄ def

=
1
N

N∑
i=1

πi =
1
N
.

Remark 1. It follows from Lemma 1 and Lemma 2 that

E[S n(π)] ≤ E[S n(πave)].

This can also be confirmed by the following direct calculation:

E[S n(π)] = N −
N∑

i=1

(1 − πi)n

= N − N
N∑

i=1

1
N

(1 − πi)n

≤ N − N

1 − 1
N

N∑
i=1

πi

n

= N − N
(
1 − 1

N

)n

= E[S n(πave)]

where their line follows from the fact that f (x) = (1 − x)n is
convex.

2) Information Placement with Constant Probability: Now
suppose that the target information is stored at an arbitrary
node with constant probability r. Let P f (n;π) be the probabil-
ity that the walker has not found the target information until
its nth visit when the stationary occupation probability of the
walker is equal to π. The following theorem shows that equally

visiting all nodes is the best strategy for obtaining the target
information within a given time limit.

Theorem 1. P f (n;π) is minimized at π = πave. In other word,
for all π and for all n = 1, 2, . . . ,

P f (n;πave) ≤ P f (n;π).

Proof: Let An be the event whereby the walker has visited
one of nodes storing the target information until Tn. Note that

E[1(An)|S n = S ] = 1 − (1 − r)S .

Thus,

P f (n;π) = 1 − E[1(An)]
= 1 − E[E[1(An)|S n(π) = S ]]
= E[(1 − r)S n(π)].

Since f (x) = (1 − r)x is a decreasing function, it follows from
Lemma 1 and Lemma 2 that

P f (n;πave) = E[(1 − r)S n(π)]
≤ E[(1 − r)S n(πave)] = P f (n;π),

which completes the proof.

Let Ts(π) be the number of steps that the walker takes until
it finds the target information when the stationary occupation
probability is equal to π. Using Ts(π), we define

R(n;π) def
= min{Ts(π), n}. (3)

Here, R(n; π) corresponds to the response time of the informa-
tion search when the walker needs to return the search result
by the nth step. In other words, when the number of steps of
the walker reaches n, the query needs to send the search result
regardless of whether the search has succeeded or failed.

Theorem 2. For all π and n = 1, 2, . . . ,

E[R(n; πave)] ≤ E[R(n; π)].

Proof: Let Ac
n be the event whereby the walker has not

visited any node storing the target information by Tn. It follows
that

E[R(n;π)] =
n−1∑
k=0

k(1(Ac
k) − 1(Ac

k+1)) + n1(Ac
n)

=

n∑
k=0

1(Ac
k)

=

n∑
k=0

P f (k;π). (4)

Thus, the desired conclusion readily follows from Theorem 1.

3) More General Placement of Information: Next, consider
situations in which the target information is more generally
placed in a network. Suppose that the number of nodes storing
the target information follows a given probability distribution
{ps(k)}Nk=0. The target information is stored at k nodes with
probability ps(k). The nodes storing the target information are
randomly located in the network when the number of nodes
storing the target information is given. Note that Section III-B2
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Fig. 1. Occupation Probability (Ran-
dom Graph)
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Fig. 2. Occupation Probability
(Power-law Graph)

is a special case of the above-mentioned situation, in which
ps(k) =

(
N
k

)
rk(1− r)k. The following theorem indicates that the

same conclusion for Theorem 1 in Section III-B2 also holds
in the abovementioned situations.

Theorem 3. P f (n;π) is minimized at π = πave. In other words,
for all π and n = 1, 2, . . . ,

P f (n;πave) ≤ P f (n;π).

Proof: Let An be the event whereby the walker has visited
one of the nodes storing the target information until Tn. Note
that

E[1(An)|S n = S ] =
N∑

k=1

ps(k)
(
1 −

(N − S
N

)k)
.

Thus,

P f (n;π) = 1 − E[1(An)]
= 1 − E[E[1(An)|S n(π) = S ]]

= ps(0) +
N∑

k=1

ps(k)E

(1 − S n(π)
N

)k .
Since f (x) = (1 − x/N)k is a decreasing function, it follows
from Lemma 1 and Lemma 2 that

P f (n;πave) = ps(0) +
N∑

k=1

ps(k)E

(1 − S n(πave)
N

)k
≤ ps(0) +

N∑
k=1

ps(k)E

(1 − S n(π)
N

)k
= P f (n;π),

which completes the proof.

We also see that E[R(n; π)] is minimized at π = πave for
the cases considered in this subsection.

C. Stationary Occupation Probability under Low-degree-
preferential RW

The results in Section III-B suggest that the RW-based
search would perform the best in terms of minimizing the
search-failure ratio or minimizing the response time when the
stationary occupation probability π is uniform. The walker
visits all nodes in the network with equal probability. Although
the stationary occupation probability is not uniform under the
low-degree-preferential RW, we could expect that the low-
degree-preferential RW makes the occupation probability more
uniform than the basic or high-degree-preferential RW. Table
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(Gnutella)
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(Facebook)

TABLE I. Difference between the largest and smallest stationary
occupation probabilities

Graph c = 0 c = 1 c = −1

Random 4.82 × 10−4 1.10 × 10−3 2.66 × 10−4

Power law 3.55 × 10−2 9.58 × 10−2 2.16 × 10−3

Gnutella 2.31 × 10−3 1.62 × 10−2 1.15 × 10−3

Facebook 5.92 × 10−3 2.78 × 10−2 2.04 × 10−3

I compares the difference between the largest and smallest
stationary occupation probabilities of the walker, i.e.,

πde f
def
= max

i
πi −min

i
πi,

for three types of random walks (RWs): basic RW, high-
degree-preferential RW (c = 1 in (1)), and low-degree-
preferential RW (c = −1 in (1)). The stationary occupation
probability is numerically obtained by solving the Markov
chain describing the transition of the walker. We conduct the
numerical experiments in four different networks: a random
graph, a power-law graph, a Gnutella network, and a Facebook
network. These networks will be described in detail in Section
IV-A. Table I verifies our expectation. Namely, the low-degree-
preferential RW exhibits the smallest πde f among the three
RWs for all four of the networks.

Figure 1 compares the stationary occupation probabilities
for the three RWs on the random graph. The vertical axis shows
the occupation probability, and the horizontal axis shows
the node number, which is assigned in descending order of
occupation probability (πi ≥ πi+1 for all i = 1, 2, . . . ). The
figure reveals that the occupation probability is more uniform
under the low-degree-preferential RW than under the basic or
high-degree-preferential RW. The same comparison is made
in Figs. 2 (power-law graph), 3 (Gnutella), and 4 (Facebook),
which also provide numerical support for our expectation.

D. Self-avoidance

If the walker moves a step without using the information
on the past trajectory, the walker may wastefully visit the
same node multiple times, which degrades the efficiency of the
information search. In order to avoid multiple redundant visits
to the same node, we herein consider a function called self-
avoidance, which allows nodes to keep the information on the
trajectory of the walker. In order to explain the algorithm of the
self-avoidance function, consider the case in which the walker
currently stays at node i. When the self-avoidance function is
used, node i knows a set of adjacent nodes, denoted by Nm(i),
to which the walker has already moved from node i. Using the
knowledge on Nm(i), the walker selects node j ∈ N (i)\Nm(i)
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TABLE II. Networks Used in the Simulation

Types of graph # of nodes # of links

Random graph 5000 24894
Power-law graph 5000 15915

Gnutella 6299 20776
Facebook 4039 88234

to move with probability pi→ j, which is given as follows:

pi→ j =
dc

j∑
k∈N (i)\Nm(i) dc

k
. (5)

If N (i) = Nm(i) (N (i) \ Nm(i) = ∅), the walker selects
an adjacent node to move to with equal probability. We
have numerically confirmed that the self-avoidance function
significantly improves the search performance of the low-
degree-preferential RW.

IV. Simulation Experiments

A. Simulation Conditions

We evaluated the search performance of the low-degree-
preferential RW through simulation experiments. We used
four different model networks listed in Table II. The random
graph has 5,000 nodes and 24,894 links. Each pair of nodes
is connected by a single link with probability 0.002. The
power-law graph was obtained as follows. First, a degree
sequence was produced from the power-law degree distribution
with exponent 2.0, and a graph having the produced degree
sequence was generated by the Havel-Hakimi algorithm [15].
Then, rewiring of the generated graph while maintaining its
degree sequence was performed numerous times in order to
remove the degree correlation, and the resultant power-law
graph was used in the simulation. Gnutella and Facebook
networks were generated based on datasets available at the site
of Stanford University [16]. Note that Gnutella forms a direc-
tional network, and thus we generate a nondirectional network
from the dataset of Gnutella by making links nondirectional.

B. Results 1: Rare Information Retrieval

First, we investigated the search performance of the low-
degree-preferential RW when the target was rare information,
which is stored at only a single node. This situation corre-
sponds to the case of Section III-B3, where ps(1) = 1 and
ps(k) = 0 for k = 2, 3, . . . ,N. We evaluated the search failure
ratio P f (n), i.e., the probability that the target information has
not been found before the nth step of the walker, by setting
n to four different values (N/2,N, 3N/2, 2N), where N is the
number of nodes. Note that parameter n corresponds to the
response time limit. The results are shown in Figs. 5 (random
graph), 6 (power-law graph), 7 (Gnutella), and 8 (Facebook).
The horizontal axis of these figures shows the preference
parameter c in (1). In the figures, c = −∞ indicates the lowest-
degree-preferential RW, in which the walker moves a step to
the lowest degree node among adjacent nodes of the current
location, and c = ∞ indicates the highest-degree-preferential
RW, in which the walker moves a step to the highest degree
node among adjacent nodes of the current location. The self-
avoidance function was used in the simulation. Each figure
shows an average search failure ratio, which was taken for
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all possible pairs of the target-storing node and the search
initiation node.

All of the figures confirm that the search failure ratio
decreases as preference parameter c decreases from ∞. In the
random graph (Fig. 5), P f (2N) is minimized around c = −2,
and, in the power-law graph (Fig. 6), P f (2N) is minimized
around c = −3. For Gnutella (Fig. 7), P f (2N) is minimized
around c = −4, and, for Facebook (Fig. 8), P f (2N) is
minimized around c = −1. Based on these results, we see
that the preference for low-degree nodes decreases the search
failure ratio, but the excessive preference may degrade the
search performance. The best value of the preference parameter
depends on the structure of the graph. We also see that the gain
obtained by the preference for low-degree nodes becomes large
as n (response time limit) increases.

We also evaluated the average response time E[R(n)],
defined in (3), through simulation experiments by set-
ting the response time limit n to four different values
(N/2,N, 3N/2, and2N). The results are shown in Figs. 9 (ran-
dom graph), 10 (power-law graph), 11 (Gnutella), and 12
(Facebook). These figures also confirm that the low-degree-
preferential RW outperforms the basic RW or the high-degree-
preferential RW in terms of faster retrieval of the target
information.

C. Results 2: Common Information Retrieval

Next, we investigated the search performance of the low-
degree-preferential RW when the target information was more
common and was stored at an arbitrary node with a probability
of 0.002. For example, the target information was stored at 10
nodes on average in the random graph used in the simulation
because it had 5,000 nodes.
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Fig. 10. Response Time (Power-law
Graph: rare information)

�
�
�
�
�
�
�
�
��
��

�

)]2/([ NRE

)]([ NRE

)]2/3([ NRE

)]2([ NRE

4000

6000

8000

1 10
4

c

0

2000

-4 -2 0 2 4 !  

Fig. 11. Response Time (Gnutella:
rare information)
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Fig. 12. Response Time (Facebook:
rare information)

The search failure ratios P f (n) evaluated by setting n at
four different values (N/8, N/4, 3N/8, N/2) are summarized in
Figs. 13 (random graph), 14 (power-law graph),15 (Gnutella),
and 16 (Facebook). Since the target file is stored at multiple
nodes, the search failure ratio is much smaller than in the
rare-information retrieval case in Section IV-B. By focusing on
P f (N/2), we find that the preference toward low-degree nodes
is also effective for decreasing the search failure ratio. For
example, in Fig. 13 (Random Graph), P f (N/2) is minimized
around c = −2.25. In the power-law graph (Fig. 14) and for
Gnutella (Fig. 15), P f (N/2) is minimized around c = −1.25,
and, for Facebook (Fig. 16), P f (N/2) is minimized around
c = −1.

Table III compares the search failure ratio P f (2N) at c = 0
with the minimum value of P f (2N) when the target is rare
information. The minimum value of P f (2N) is obtained by
adjusting the value of preference parameter c. Table IV also
compares P f (2N) for c = 0 with the minimum value of
P f (2N) when the target is common information. Based on
these tables, the gain obtained by the low-degree preference is
slightly smaller for common information retrieval than for rare
information retrieval. When the target information is common,
the query could find the target information with a small number
of steps. This is the reason why the low-degree-preferential
RW is less effective for common-information retrieval than
for rare-information retrieval.

The average response time E[R(n)] evaluated for four
different values (N/8, N/4, 3N/8, and N/2) of n are also
summarized in Figs. 17 (random graph), 18 (power-law graph),
23 (Gnutella), and 24 (Facebook). As in the case of rare infor-
mation retrieval, the low-degree-preferential RW outperforms
the basic RW and the high-degree-preferential RW in terms of
faster retrieval of the target information. When the response
time limit n is small (e.g., n = N/8), however, the gain obtained
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Fig. 13. Search Failure Ratio (Ran-
dom Graph: common information)
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Fig. 15. Search Failure Ratio
(Gnutella: common information)
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Fig. 16. Search Failure Ratio (Face-
book: common information)

by the preference for low-degree nodes is not so significant.

TABLE III. Gain obtained by the low-degree preference (rare
information).

Graph P f (2N) at c = 0 min{P f (2N)} ratio

Random 0.104821 0.067345 (c=-2) 0.642476
Power law 0.428333 0.025544 (c=-4) 0.059636
Gnutella 0.280931 0.054715 (c=-3) 0.194763
Facebook 0.439501 0.285184 (c=-1) 0.648881

TABLE IV. Gain obtained by the low-degree preference (common
information).

Graph P f (N/2) at c = 0 min{P f (N/2)} ratio

Random 0.017938 0.015752 (c=-2.25) 0.878136
Power law 0.115476 0.048901 (c=-1.25) 0.423473
Gnutella 0.015932 0.009953 (c=-1.25) 0.624718
Facebook 0.126569 0.102893 (c=-1) 0.81294

D. Effect of Self-avoidance

Finally, in Figs. 21 (power-law graph) and 22 (Gnutella),
we show the search failure ratio when the self-avoidance
function is disabled. Comparison of these figures with Figs. 6
and 7 reveals that the search performance without using the
self-avoidance function is much worse than the performance
with the self-avoidance function. The improvement by the self-
avoidance function is large especially when the preference
parameter c takes a large negative value. Figures 21 (power-law
graph) and 22 (Gnutella), which show the response time when
the self-avoidance function is disabled, also support the same
conclusion. When the preference parameter is set to a large
negative value, the walker is likely to stay at the lowest-degree
nodes, and thus the stationary occupation probabilities at these
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Fig. 17. Response Time (Random
Graph: common information)
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Fig. 18. Response Time (Power-law
Graph: common information)
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Fig. 19. Response Time (Gnutella:
common information)
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Fig. 20. Response Time (Facebook:
common information)

nodes would be very large. The self-avoidance function is very
effective in mitigating the bias of the occupation probability
on the lowest-degree nodes.

V. Conclusion

In the present paper, we propose a low-degree-preferential
RW in order to realize efficient information searches. The low-
degree-preferential RW visits all nodes more equally than the
basic RW and the high-degree-preferential RW. Because of
this, faster information retrieval and a smaller search failure
ratio are attained by the low-degree-preferential RW, especially
in the case of rare-information retrieval. In the present paper,
we focus only on the single-walker case, but in actual situations
multiple walkers would be used. In multiple-walker cases,
we could use a combination of both low-degree- and high-
degree-preferential RWs. The local navigation rule for multiple
walkers remains a subject for future research.
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