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Abstract We study a discrete-time first-come first-served (FCFS) single-server queue with an acceptance
period and no early arrival. The number of arriving customers is Poisson distributed, and their service times
are generally distributed. Customers choose their arrival times with the goal of minimizing their expected
waiting times. In this study, we show an arrival-time distribution of customers for the equilibrium mean
waiting time.

1. Introduction

Many real-life queueing systems have acceptance periods for arriving customers, that is, the system
accepts arriving customers only during the period between the opening and closing times. Typical
examples of such queueing systems are restaurant in lunch time, service counter at bank (or gov-
ernment office), and rush-hour congestion in transportation networks. Customers of these systems
face with the decision problem of when to arrive at the systems so as to achieve a certain goal, e.g.,
to minimize the waiting time for service. Customers’ decisions on arrival, naturally, interact with
each other, and thus the arrival times of customers are endogenously determined.

Glazer and Hassin [1]’s work is a pioneer study on the decision problem on when to arrive at the
queueing system with an acceptance period. Glazer and Hassin studied a continuous-time first-come
first-served (FCFS) single-server queue with an acceptance period, where a Poisson-distributed
number of homogeneous customers arrive at the system and customers may arrive at the system
before its opening time, i.e., early arrival of customers is allowed. The service times are assumed
to be independently and identically distributed according to an exponential distribution. Glazer
and Hassin assumed that customers choose their arrival times with the goal of minimizing their
expected waiting times. More specifically, they studied the queueing model by a non-cooperative
game with a random number of players, and obtained an equilibrium strategy of arriving customers
as a mixed strategy.

Similar queueing systems have been studied. Hassin and Kleiner [2] studied a queueing system
without early arrival, and obtained an equilibrium strategy of arriving customers. Hassin and
Kleiner [2] also reported that no early arrivals reduce the mean waiting time in equilibrium especially
when the system is heavily loaded (see Figure 3 therein). Haviv [3] and Ravner [4] studied queueing
models with a tardiness cost and an arrival order cost, respectively, as well as waiting cost.

In this paper, we consider a discrete-time FCFS single-server queue with an acceptance period
and no early arrivals, and discuss an arriving-time distribution achieving the equilibrium mean
waiting time, which is referred to as the equilibrium arriving-time distribution. As in the preced-
ing studies [1, 2, 3, 4], we assume that the number of arriving customers is Poisson distributed.
However, our study has three differences from these preceding studies. First, our model is in
discrete time whereas the existing models in the preceding studies are in continuous time. The
assumption of discrete time facilitates the computation of an equilibrium mean waiting time and
the corresponding equilibrium arriving-time distribution. Second, the service times in our model
are generally distributed whereas those in the existing models are exponentially distributed. Thus,
our model enables us to investigate the effect of the service time distribution on the arrival strategy
of customers. Third, the waiting cost of our model is the mean actual waiting time whereas that
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of the existing models is the mean virtual waiting time.
The rest of the paper is organized as follows. Section 2 describes the queueing model studied in

this paper, and provides some fundamental results on the mean workload and the actual waiting
time. Section 3 introduces the notion of equilibrium mean waiting time and equilibrium arriving-
time distribution, and then presents a procedure for calculating an equilibrium mean waiting time
and the corresponding equilibrium arriving-time distribution.

2. Preliminaries

2.1. Model description

We consider a discrete-time first-come, first-served (FCFS) queueing system with infinite waiting
room and one server as follows. The time axis of the system is divided into fixed-length time
intervals, where each time interval is referred to as slot t for nonnegative integer t ∈ Z+ :=
{0, 1, 2, . . .}. Without loss of generality, each time slot is assumed to have length one. The system
is open for arriving customers during an acceptance period, which is defined by a set of slots
T := {0, 1, 2, . . . , T} for a positive integer T . The arriving customers entering during the same
time-slot are served in random order. We assume that the server is available to continue service
until all customers who arrived during the acceptance period T are served.

In what follows, some probabilistic assumptions on our model are listed.

Assumption 2.1 (Population and arrival time distribution) The number of customers seek-
ing service from the system is denoted by a Poisson random variable A with positive mean λ, and
each arriving customers independently chooses its arrival time from the acceptance period T with
a common probability distribution P := {pt; t ∈ T }

1).

Assumption 2.2 (Arrival instants of customers) In each slot t ∈ T , the arrival of customers
can occur immediately after the slot starts. Let At, t ∈ T , denote the number of arrivals in slot t,
then we have from Assumption 2.1, for t ∈ T ,

P(At = n) = e−λpt
(λpt)

n

n!
, n ∈ Z+. (2.1)

Assumption 2.3 (Service requirement and processing instants) The service times of cus-
tomers arriving at the system in slots 0 through T are independent and identically distributed
(i.i.d.) with discrete distribution {b(k); k ∈ N} having finite positive mean b. Thus, let B de-
note a generic random variable for the service time. It then follows that P(B = k) = b(k) for
k ∈ N := {1, 2, 3, . . .} and

b := E[B] =

∞∑

k=1

kb(k). (2.2)

If the server holds a customer in the middle of slot t (t ∈ Z+), it processes the customer’s service
requirement by 1 at the end of the slot.

We note that the system is always stable because the acceptance period T is a finite set and
the expected total workload into the system is finite, i.e., E[A]b = λb < ∞. For t ∈ T , let Bt,i’s,
i ∈ {1, 2, . . . , At}, denote the service times of the customers arriving at slot t. For t ∈ T , let Xt

denote the total service times of the customers arriving at slot t, and xt(k) = P(Xt = k) for k ∈ N.
It then follows from Assumption 2.2 and 2.3 that

Xt =

At∑

i=1

Bt,i, t ∈ T . (2.3)

1)The common arrival distribution P is referred to as a symmetric arrival strategy profile in Haviv 2013.
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and thus
∞∑

k=0

zkxt(k) =

∞∑

n=0

e−λpt
(λpt)

n

n!
(̃b(z))n = exp

{
−λpt

(
1− b̃(z)

)}
, (2.4)

where

b̃(z) =
∞∑

k=1

zkb(k).

Furthermore, since E[B] = b and E[At] = λpt for t ∈ T , we have

E[Xt] = E[At]E[B] = λptb, t ∈ T . (2.5)

Finally, we assume the following.

Assumption 2.4 The system is empty at the beginning of slot 0, i.e., immediately before the
arrivals of customers (if any) in slot 0.

2.2. Workload in system and mean waiting time

We first consider workload in system. Let Vt−, t ∈ T , denote the total unfinished workload
immediately before the beginning of slot t. Let vt(k) = P(Vt− = k) for t ∈ T and k ∈ Z+.
Assumption 2.4 shows that V0− = 0, i.e., v0(0) = 1, and by definition, we have

Vt− =
(
V(t−1)− +Xt−1 − 1

)+
, t ∈ {1, 2, . . . , T}, (2.6)

where (x)+ = max(x, 0) for x ∈ (−∞,∞). Thus, we obtain the following result.

Lemma 2.1 We have v0(0) = 1 and v0(k) = 0 for k ∈ N, and

vt(k) =





vt−1(0)xt−1(0) + vt−1(0)xt−1(1) + vt−1(1)xt−1(0), k = 0,
k+1∑

ℓ=0

vt−1(ℓ)xt−1(k + 1− ℓ), k ∈ N.
(2.7)

for t = 1, 2, . . . , T . Particularly, we have for t = 1,

v1(k) =

{
x0(0) + x0(1), k = 0,
x0(k + 1), k ∈ N,

(2.8)

Proof. Equation (2.7) is obvious by Assumptions 2.3, 2.4, and the recursion formula (2.6) because
the unfinished workload (if any) is processed by 1 at the end of each slot. �

Lemma 2.2

E[V1−] = λp0b+ 1− e−λp0 , (2.9)

E[Vt−] = E[V(t−1)−] + λpt−1b− (1− e−λpt−1vt−1(0)), t = 2, 3, . . . , T. (2.10)

Proof. From (2.6), we have for t ∈ T ,

E[Vt−] = E[(V(t−1)− +Xt−1 − 1)I(V(t−1)− +Xt−1 ≥ 1)]

= E[V(t−1)−] + E[Xt−1]− (1− P(V(t−1)− +Xt−1 = 0)). (2.11)

Furthermore, we note that

P(V(t−1)− +Xt−1 = 0) = P(V(t−1)− = 0)P(Xt−1 = 0) (2.12)

because V(t−1)− and Xt−1 are independent and nonnegative random variables. Equations (2.11)
and (2.12) complete the proof. �

Next, we consider the (actual) waiting time of an arbitrary customer arriving in a slot Let
T + = {t ∈ T ; pt > 0}. We then define Wt, t ∈ T

+, as the waiting time of an arbitrary customer
arriving in slot t
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Lemma 2.3

E[Wt] = E[Vt−] +
b

2

(
λpt

1− e−λpt
− 1

)
, t ∈ T +. (2.13)

Proof. For t ∈ T +, let qt(k), k ∈ Z+, denote the probability that a customer randomly chosen
from the ones arriving in slot t enters the server after the k − 1 members of them receive service
and leave the system. Recalling that the arriving customers during the same slot are randomly
ordered, then it follows from (2.1) that

qt(k) =

∞∑

ℓ=k+1

1

ℓ

P(At = ℓ)

P(At ≥ 1)
=

∞∑

ℓ=k+1

1

ℓ

P(At = ℓ)

1− P(At = 0)

=
∞∑

ℓ=k+1

1

ℓ

e−λpt

1− e−λpt
(λpt)

ℓ

ℓ!
, k ∈ Z+. (2.14)

Thus, for t ∈ T +, we have

E[Wt] = E[Vt−] +
∞∑

k=0

kqt(k)× b

= E[Vt−] +
∞∑

ℓ=1

1

ℓ

e−λpt

1− e−λpt
(λpt)

ℓ

ℓ!

ℓ−1∑

k=0

kb

= E[Vt−] +
b

2

∞∑

ℓ=1

(ℓ− 1)
e−λpt

1− e−λpt
(λpt)

ℓ

ℓ!

= E[Vt−] +
b

2

(
λpt

1− e−λpt
− 1

)
,

which shows that (2.13) holds. �

3. Arrival-Time Distribution for Equilibrium Mean Waiting Time

We introduce the equilibrium mean waiting time and equilibrium arrival-time distribution, and
present a procedure for calculating them.

Definition 3.1 A positive value w∗ is said to be an equilibrium mean waiting time if

E[Wt] = w∗, t ∈ T +, (3.1)

E[Vt−] > w∗, t ∈ T \ T +. (3.2)

The arrival-time distribution P = {pt; t ∈ T } is said to be equilibrium if it ensures the existence of
an equilibrium mean waiting time w∗.

Let P∗ denote the set of equilibrium arrival-time distributions. Let P∗ := {p∗t ; t ∈ T } denote
an arbitrarily element of P∗. In the rest of this paper, we fix P = P∗, i.e., pt = p∗t for all t ∈ T .
It follows from V0− = 0, Definition 3.1 and Lemma 2.3 that 0 ∈ T +, i.e.,

p∗0 > 0, (3.3)

otherwise, i.e., if 0 ∈ T \ T +, we have 0 = E[V0−] > w∗ by (3.2), which contradicts to w∗ > 0 . We
then have

w∗ = E[W0] =
b

2

(
λp∗0

1− e−λp
∗

0

− 1

)
. (3.4)
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Remark 3.1 It is easy to see that x/(1− e−x) is increasing in x ≥ 0 and

lim
x→0

x

1− e−x
= 1. (3.5)

Therefore, (3.4) implies that w∗ is positive and increasing with p∗0 ∈ (0, 1).

It follows from Lemma 2.3, Definition 3.1 and (3.4) that p∗t (t = 1, 2, . . . , T ) satisfies following
equation.

b

2

(
λp∗t

1− e−λp
∗

t

− 1

)
= (w∗ − E[Vt−])

+

=
b

2

(
λp∗0

1− e−λp
∗

0

− 1−
2E[Vt−]

b

)+

, t = 1, 2, . . . , T, (3.6)

which results in the following theorem.

Theorem 3.1 For t = 1, 2, . . . , T , the probability p∗t is a solution of the following equation:

λp∗t
1− e−λp

∗

t

=

(
λp∗0

1− e−λp
∗

0

− 1−
2E[Vt−]

b

)+

+ 1, t = 1, 2, . . . , T, (3.7)

E[Vt−] = E[V(t−1)−] + λp∗t−1b− (1− e−λp
∗

t−1vt−1(0)), t = 1, 2, . . . , T, (3.8)
∑

t∈T

p∗t = 1, (3.9)

where the last equation is the normalizing condition for the probability distribution {p∗t ; t ∈ T }.

Proof. Equations (3.7) and (3.8) are immediately obtained from (3.6) and (2.10). �

We close this section by summarizing the computational procedure for the equilibrium arrival-
time distribution P∗ = {p∗t ; t ∈ T }.

• Step 0: Set p∗0 = ε for a small ε > 0, and choose δ > 0 as a precision parameter.

• Step 1: Compute w∗ by (3.4).

• Step 2: For t = 1, 2, . . . , T , compute p∗t by (3.7), where E[Vt−] and vt−1(0) are recursively
computed by (3.8) and (2.7), respectively.

• Step 3: If |1 −
∑

t∈T p∗t | < δ, return {p∗t ; t ∈ T } as the equilibrium solution, otherwise
p∗0 := p∗0 + ε and go to Step 1.
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Abstract This paper investigates the finite bottleneck game, in which we assume a finite set of commuters
and a finite set of departing time slots. We show that the set of Nash equilibria is equivalent to the set of
strong Nash equilibria when we assume homogeneous commuters in their preferences. We also show that
pure-strategy Nash equilibria do not exist in general in this setting. Moreover, when we allow commuters to
differ in their preferences, we show that Nash equilibria may not exist, and the equivalence result no longer
follows.

1. Introduction

A bottleneck model is used in analyzing a rush-hour traffic congestion, where commuters depart from their
origins (e.g. their houses) to their destinations (e.g. their workplaces). The simplest model was independently
analyzed by Vickrey (1969) and Hendrickson and Kocur (1981), where a continuum of commuters depart
from a single origin to a single destination connected by a single road. Along the road, there is a bottleneck
in which a queue forms if there are too many commuters in the bottleneck at a given time. In these papers,
commuters decide on the departure time based on the trade-offs between congestion and their optimal arrival
time.

Moreover, these studies assume homogeneous commuters in that all commuters have the same preferred
time of arrival and a specific form of the trip cost function. Their contribution was that departure time
decision made by commuters are endogenously determined by means of including trade-off between their
travel time and their arrival time.

Other subsequent papers, such as Smith (1983), Daganzo (1985) and Arnott et al. (1990), also consider
a continuum of commuters and a continuous time horizon. However, a finite set of commuters and a discrete
time horizon seem closer to real-life situations in which the population of a city is finite. The situation
corresponds to where there is a relatively small number of commuters, each of which can cause congestion
to occur.

Our model, which we call the finite bottleneck game, is endowed with a finite set of commuters and a
finite set of time periods, each of which is called a slot. Commuters have preference on two arguments: her
departure time and the queue-length which she have to wait through the bottleneck, where in this model
the capacity is the maximum number of commuters that can pass through it in each slot. We assume
homogeneous commuters as in the previous studies above, but we do not give a specific form of trip costs
function. In this sense, our model is an abstract generalization of models of the aforementioned papers.

Mathematically, our model is also an extension of the congestion game (c.f. Rosenthal (1973)). The
congestion game considers a situation in which n players choose a combination of primary factors out of t
alternatives. Each player’s payoff is determined by the sum of the costs of each primary factor she chooses,
while the cost of each primary factor depends on the number of players who choose it, and not on the players’
names. Rosenthal (1973) proved that there always exists at least one pure-strategy Nash equilibrium by
constructing a potential function, which is later formalized by Monderer and Shapley (1996).

Though Rosenthal (1973) and Monderer and Shapley (1996) assume that the cost functions, hence payoff
functions, have the same form among the players who take same factors, Milchtaich (1996) allows payoff
functions to be different between players in his model, where players choose only one factor from a common
set of factors. In Milchtaich (1996), it was shown that a Nash equilibrium always exists in pure strategies.
Moreover, Konishi et al. (1997a) shows that in the same model, the set of strong Nash equilibria, which is a
stronger concept than Nash equilibria, is nonempty.

Specifically, Konishi et al. (1997a) describes the games in the above class using the following three
properties: anonymity [A], partial rivalry [PR] and independence of irrelevant choices [IIC]1. First, [A]
requires that the payoff of each player depends on the number of players who choose each action and not

1[IIC] condition is also called no spillovers [NS] in Konishi et al. (1997b)
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on the players’ names. [PR] states that the payoff of each player increases if another player who had chosen
the same strategy chooses a different strategy. Finally, [IIC] states that the payoff of a player is not affected
even if another player that chooses a different strategy from hers switches to another strategy that is also
different strategy from hers.

In relation to congestion games, our model does not satisfy [IIC], whereas the other two conditions hold.
Specifically, [IIC] would be violated in the case where a player who had departed later then switched to an
earlier departure time and thereby possibly creating a longer queue for some of those players which she leaps
over.

In this paper, we restrict our attention to the special case where commuters are homogeneous. Then, we
can show that a set of Nash equilibria coincides with that of strong Nash equilibria (Proposition 3.1), while
pure-strategy Nash equilibria do not exist in general. It can be stated that this proposition partly explains
the difficulty in the existence of a Nash equilibrium. In addition, we illustrate that the equivalence of the
set of Nash equilibria and that of strong Nash equilibria does not hold when the homogeneity assumption is
dropped.

The rest of the paper is organized as follows: in Section 2, we define the model and notations. In Section
3, we state the main result, and Section 4 compares it and the heterogeneous case.

2. Model

We consider a bottleneck model with finite numbers of commuters and time slots. Let t = 1, ..., T be the
available time slots for departure. Each time intervals can be every minute or every five minutes, for example.
Let the set of time slots be T = {1, ..., T}. At each time slot, c cars can go through a bottleneck, where
c is a positive integer. If in the end of period t − 1 the length of queue qt−1, and if mt cars arrives at the
bottleneck in period t, then the length of the queue in the end of period t is given by qt = max {0, q̃t}, where
q̃0 ≡ 0 and q̃t ≡ qt−1 + mt − c for t ≥ 1 is called the effective length of queue in period t. Effective and
real queue length vectors are denoted q̃ = (q̃1, ..., q̃T ) and q = (q1, ..., qT ), respectively. Let i = 1, ..., n be
commuters, and let the set of commuters be denoted by N = {1, ..., n}. Commuter i’s choice (strategy) of
departing time is denoted τi ∈ T . Given a strategy profile τ = (τ1, ..., τn) ∈ T N , and the resulting departure
pattern is given by m(τ) = (m1(τ), ...,mT (τ)) ∈ ZT

+ and resulting effective and real queue length vectors
are given by q̃(τ) and q(τ), respectively. Each commuter’s payoff function is written as ui(t, qt), where we
assume that ui(t, qt) > ui(t, qt + 1) for all t ∈ T and qt ∈ Z+. That is, each commuter would prefer the
situation of departing at time t with less congestion. We assume strict preferences that is generic case.

Definition 2.1 (Strict Preferences).
For all i = 1, ..., n, all t, t′ ∈ T with t ̸= t′, and all qt, qt′ ∈ Z+, ui(t, qt) ̸= ui(t

′, qt′).

Definition 2.2 (Nash Equilibrium).
A strategy profile τ is a Nash equilibrium if for all i ∈ N and all t ∈ T , ui(τ, qτi(τ)) ≥ ui(t, qt(t, τ−i)).

Before we give a characterization of Nash equilibria,we introduce new terms that is used for its charac-
terization.

Definition 2.3 (Basin and Terrace).
1. A single slot t is said to be a basin at τ ∈ T N if q̃t(τ) < 0 and q̃t−1(τ) ≤ 0.

2. A single slot t is a single terrace at τ ∈ T N if q̃t(τ) = 0 and q̃t−1(τ) ≤ 0.

3. Consecutive slots [t1, t2] with 1 ≤ t1 < t2 is a connected terrace at τ ∈ T N if q̃t′(τ) > 0 for all
t′ ∈ [t1, t2) and q̃t2 (τ) ≤ 0.

Figure 1: Basin and Terrace

Figure 1 is an example, where there are five commuters, six slots and c = 1, and the departure pattern
is painted pink. In this example, [2, 4] is a connected terrace while t = 1 and t = 6 each is a single terrace.
In addition, t = 6 is a basin.

With these notions, the following is a characterization of Nash equilibria in this game.

Proposition 1.
A strategy profile τ is a Nash equilibrium if and only if for all i ∈ N ,
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1. ui(τi, qτi(τ)) ≥ ui(t
′,max{q̃t′(τ) + 1, 0}) for all t′ < τi,

2. for t′ > τi,
2a. ui(τi, qτi(τ)) ≥ ui(t

′,max{q̃t′(τ), 0}) for all t′ ∈ [t1, t2] with t
′ > τi, where [t1, t2] is a connected

terrace at τ and τi ∈ [t1, t2].
2b. Otherwise, ui(τi, qτi(τ)) ≥ ui(t

′,max{q̃t′(τ) + 1, 0}).

Proof. First, suppose that profile τ is a Nash equilibrium. By definition, for all i ∈ N and all t′ ∈ T ,

ui(τ, qτi(τ)) ≥ ui(t
′, qt′(t

′, τ−i)).

We show that for the both cases of t′ < τi and t′ > τi, the queue-length at slot t′, qt′(t
′, τ−i) satisfies the

above.
Note that profile (t′, τ−i) satisfies the following:

mτi(t
′, τ−i) = mτi(τ)− 1, (1)

mt′(t
′, τ−i) = mt′(τ) + 1, (2)

mt(t
′, τ−i) = mt(τ) ∀t ̸= τi, t

′. (3)

1. When t′ < τi:
Since qt′−1(τ) = qt′−1(t

′, τ−i) by (3), we obtain

q̃t′(t
′, τ−i) = qt′−1(t

′, τ−i) +mt′(t
′, τ−i)− c

= qt′−1(τ) + (mt′(τ) + 1)− c

= (qt′−1(τ) +mt′(τ)− c) + 1

= q̃t′(τ) + 1.

Thus, qt′(t
′, τ−i) = max{q̃t′(τ) + 1, 0}.

2. When t′ > τi:
2a. When t′ ∈ [t1, t2], the connected terrace to which t′ belongs:

Note that since q̃t′′(τ) > 0, so q̃t′′(τ) ≥ 1 for all t′′ ∈ [τi + 1, t′ − 1], q̃t′′(t
′, τ−i) = q̃t′′(τ)− 1 ≥ 0.

It follows that

q̃t′(t
′, τ−i) = qt′−1(t

′, τ−i) +mt′(t
′, τ−i)− c

= (qt′−1(τ)− 1) + (mt′(τ) + 1)− c

= qt′−1(τ) +mt′(τ)− c

= q̃t′(τ).

Thus, qt′(t
′, τ−i) = max{q̃t′(τ), 0}.

2b. Otherwise:
We first show qt′′(τ) = qt′′(t

′, τ−i) for some t′′ ∈ [τi, t
′). Suppose not. Then, qt(τ) > qt(t

′, τ−i) ≥
0 for all t ∈ [τi, t

′), implying that t′ belongs to the same connected terrace as τi. This is a
contradiction, since we have already considered in the case 2a..
When t′′ = t′ − 1, we immediately obtain qt′−1(τ) = qt′−1(t

′, τ−i).
When t′′ ̸= t′ − 1, using (3), we obtain

q̃t′′+1(t′, τ−i) = qt′′(t
′, τ−i) +mt′′(t

′, τ−i)− c

= qt′′(τ) +mt′′(τ)− c

= q̃t′′+1(τ).

Thus, qt′′+1(t
′, τ−i) = qt′′+1(τ). Similarly,

qt′′+2(τ) = qt′′+2(t′, τ−i),

...

qt′−1(τ) = qt′−1(t′, τ−i).

With this assertion, we obtain

q̃t′(t
′, τ−i) = qt′−1(t

′, τ−i) +mt′(t
′, τ−i)− c

= qt′−1(τ) + (mt′(τ) + 1)− c

= (qt′−1(τ) +mt′(τ)− c) + 1

= q̃t′(τ) + 1.

Thus, qt′(t
′, τ−i) = max{q̃t′(τ) + 1, 0}.
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Suppose next that profile τ satisfies the above but it is not a Nash equilibrium. Then, there exists some
i ∈ N who can improve by switching to another strategy t′. However, this implies that either case 1., case
2a., or case 2b. does not hold. This is a contradiction. ■

We also introduce a stronger concept, strong Nash equilibria. A strong Nash equilibrium is a strategy
profile, which is immune to any coalitional deviation — that is, for any coalitional deviation, there is at least
one player whose payoff does not improve by the deviation. Formally,

Definition 2.4 (Coalitional Deviation).
A coalitional deviation (S, τ ′S) from profile τ is a pair of a nonempty subset of players S ⊆ N and their
strategy profile in S, τ ′S = (τ ′i)i∈S ∈ T S such that ui(τ

′
S , τ−S) > ui(τ) for all i ∈ S.

Definition 2.5 (Strong Nash Equilibrium).
A profile τ is a strong Nash equilibrium if there is no coalitional deviation from τ .

Notice that a set of a strong Nash equilibrium is always a subset of a Nash equilibrium by definition.

3. The Analysis

In the following analysis, we assume homogeneous commuters. That is, we assume u ≡ ui for all i ∈ N .
First, we show that the homogeneity in preferences is not enough to establish the general existence of Nash
equlibria.

Example 1.
Consider the following three commuter problem: N = {1, 2, 3}, T = {1, 2, 3}, c = 1, and players have the
following preferences:

u(2, 0) > u(1, 0) > u(1, 1) > u(3, 0) > u(2, 1) > u(1, 2).

Then, there is no Nash equilibrium in this game.

Proof. There can be the following 9 strategy profiles.

1. τ1 = (1, 1, 1) and q(τ1) = (2, 1, 0). Then, player 1 moves to t = 3.

2. τ2 = (1, 1, 2) and q(τ2) = (1, 1, 0). Then, player 3 moves to t = 3.

3. τ3 = (1, 1, 3) and q(τ3) = (1, 0, 1). Then, player 2 moves to t = 2.

4. τ4 = (1, 2, 2) and q(τ4) = (0, 1, 0). Then, player 3 moves to t = 3.

5. τ5 = (1, 2, 3) and q(τ5) = (0, 0, 0). Then, player 3 moves to t = 3.

6. τ6 = (2, 2, 2) and q(τ6) = (0, 2, 1). Then, player 1 moves to t = 1.

7. τ7 = (2, 2, 3) and q(τ7) = (0, 1, 1). Then, player 1 moves to t = 1.

8. τ8 = (2, 3, 3) and q(τ8) = (0, 0, 1). Then, player 1 moves to t = 1.

9. τ9 = (3, 3, 3) and q(τ9) = (0, 0, 2). Then, player 1 moves to t = 1.

Hence, there is no Nash equilibrium. ■

Therefore, we need to restrict the domain of the preferences to establish the general existence of Nash
equlibria.

However, we show a theorem which asserts that the set of Nash equlibria and the set of strong Nash
equilibria coincide. Thus, it can be said that when a Nash equilibrium exists, it exhibits strong stability in
the context of a coalitional deviation.

Theorem 3.1.
Assume that preferences are homogeneous. Then, the set of Nash equilibria coincides with the set of strong
Nash equilibria.

Proof. The proof is omitted due to space constraint. ■
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4. Heterogeneous Commuter Case

In this section, we analyze a more generalized case, commuters with heterogeneous preferences. We observe
that there do not exist Nash equilibria in general, and also show that Proposition 3.1 is no longer true when
assuming heterogeneous commuters.

Example 2.
Consider the following four commuter problem: N = {1, 2, 3, 4}, T = {1, 2, 3, 4}, c = 1, and players have the
following preferences:

u1(1, 2) > u1(2, 1) > u1(3, 1) > u1(2, 2) > u1(1, 3),

u2(2, 1) > u2(1, 2) > u2(1, 3) > u2(2, 2),

and for player i = 3, 4, ui(1, 3) > ui(t, 0) for all t = 2, 3, 4.

Proof. In this example, players 3 and 4 always choose t = 1. Player 1 may choose t = 1, 2, 3, and player 2
may choose t = 1, 2. There can be the following 6 strategy profiles.

1. τ1 = (1, 1, 1, 1) and q(τ1) = (3, 2, 1, 0). In this case, player 1 moves to t = 3.

2. τ2 = (2, 1, 1, 1) and q(τ2) = (2, 2, 1, 0). In this case, player 1 moves to t = 3.

3. τ3 = (3, 1, 1, 1) and q(τ3) = (2, 1, 1, 0). In this case, player 2 moves to t = 2.

4. τ4 = (1, 2, 1, 1) and q(τ4) = (2, 2, 1, 0). In this case, player 2 moves to t = 1.

5. τ5 = (2, 2, 1, 1) and q(τ5) = (1, 2, 1, 0). In this case, player 2 moves to t = 1.

6. τ6 = (3, 2, 1, 1) and q(τ6) = (1, 1, 1, 0). In this case, player 1 moves to t = 1.

Hence, there is no Nash equilibrium in pure strategies. ■

The next example shows that when commuters’ preferences differ from each other, the set of Nash
equilibria may not coincide with the set of strong Nash equilibria.

Example 3.
Consider the following five commuter problem: N = {1, 2, 3, 4, 5}, T = {1, 2, 3, 4, 5}, c = 1, and players have
the following preferences:

u1(1, 1) > u1(4, 1) > u1(1, 2),

u2(2, 0) > u2(1, 1) > u2(1, 2) > u2(2, 1),

u3(3, 0) > u3(1, 2) > u3(4, 1) > u3(3, 1),

u4(1, 4) > u2(t, 0) t = 2, 3, 4, 5,

u5(4, 4) > u5(t, 0) t = 1, 2, 3, 5.

Proof. There is only one Nash equilibrium τ∗ = (1, 1, 4, 1, 4) in this game. However, either S = {1, 3}
or S = {1, 2, 3} can deviate from τ∗ with τ ′{1,3} = (τ ′1, τ

′
3) = (4, 1), or τ ′{1,2,3} = (τ ′1, τ

′
2, τ

′
3) = (4, 2, 3),

respectively. ■

Nash Equilibrium After Deviation

Figure 2: Deviation by S = {1, 2, 3}

5. Concluding Remarks

We have investigated the finite bottleneck game with homogeneous commuters. The main result of this
paper is that the set of Nash equilibria coincides with that of strong Nash equilibria with this setting. In
other words, the set of Nash equilibria “shrinks” to that of strong Nash equilibria, which may explain why
the general existence of a Nash equilibrium is difficult to establish. We also have shown that this result
cannot be applied to the heterogeneous commuter case.

In this regard, our model is quite contrasting to Milchtaich (1996) and Konishi et al. (1997a), where
at least one Nash equilibrium always exists, and moreover the set of strong Nash equilibria is nonempty
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under fair conditions that characterize the “congestion (of each strategy)”—anonymity, independence from
irrelevant choice and partial rivalry—even though preferences of players are heterogeneous.

As our examples show, we do not give the sufficient condition for the general existence of a Nash equi-
librium. Hence, the remaining task is to establish such condition.
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